计算机仿真介绍

2019-01-02 09:38:35      点击:

摘要

计算机仿真是一种描述性技术,是一种定量分析方法。通过建立某一过程或某一系统的模式,来描述该过程或该系统,然后用一系列有目的、有条件的计算机仿真实验来刻画系统的特征,从而得出数量指标,为决策者提供关于这一过程或系统的定量分析结果,作为决策的理论依据。

发展

仿真技术最初主要应用在军事领域。20 世纪5060 年代,仿真技术开始应用于洲际导弹的研制、阿波罗登月计划、核电站运行等方面。从80 年代开始,仿真技术借助计算机技术的发展开始进入了计算机仿真的崭新时代,计算机仿真技术开始大规模地应用于仪器仪表、虚拟制造、电子产品设计、仿真训练等人们生产、生活的各个方面。

90 年代开始,基于计算机仿真技术,国内建设了一批水平较高、规模较大的半实物仿真系统,如射频制导导弹半实物仿真系统、红外制导导弹半实物仿真系统、歼击机工程飞行模拟器、歼击机半实物仿真系统、驱逐舰半实物仿真系统等,这些半实物仿真系统在武器型号研制中发挥了重大作用。

2008 年全球计算机仿真市场的总体规模达883亿美元以上,中国计算机仿真市场的总体规模达298亿人币以上,未来计算机仿真行业发展潜力巨大。

技术

计算机仿真是以相似原理、信息技术、系统技术及相应领域的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一门综合性技术。计算机仿真技术具有经济、安全、可重复和不受气候、场地、时间限制的优势,被称为除理论推导和科学试验之外的人类认识自然、改造自然的第三种手段。

计算机仿真技术广泛应用于国防、工业及其他人类生产生活的各个方面,如:航空、航天、兵器、国防电子、船舶、电力、石化等行业,特别是应用于现代高科技装备的论证、研制、生产、使用和维护过程。如今,计算机仿真行业已经成为代表国家关键技术和科研核心竞争能力,具有相当规模的产业。计算机仿真行业按仿真技术的应用特点可以划分为计算机仿真测试、仿真模拟训练、虚拟制造等领域,其中计算机仿真测试又可分为机电仿真测试、射频仿真测试及通用测试等。如今全球计算机仿真市场的总体规模已超千亿美元,中国计算机仿真市场的总体规模在700亿元人民币以上,未来计算机仿真行业发展潜力巨大。

计算机仿真行业是一个全球竞争的行业。以美国为首的欧美发达国家厂商凭借先发优势和成熟仿真产品,在全球范围内的计算机仿真主要市场占据领先地位,其主要企业包括美国国家仪器公司(NI)、德国dSPACE公司、法国ESI公司、美国安捷伦科技有限公司、英国思博伦公司、CAE公司等。国内计算机仿真行业发展较晚,其在国内的应用包括军用和民用两个领域,在开放的民用市场,国外企业凭借产品技术的先进性和发达的市场销售网络,在相应市场处于优势地位。在国防军工、核能源、航空航天以及其他尖端核心技术等军用领域,受国防安全和国外禁运等多重影响,国外企业和产品受到很大限制,难以直接进入,拥有国防军工资质的国内厂商特别是具有一定自主创新能力的国内厂商可以凭借自主产品和贴近终端用户的个性化服务参与竞争,并具有相当的竞争优势。

仿真

随着科学技术的进步,尤其是信息技术和计算机技术的发展,“仿真”的概念不断得以发展和完善,因此给予仿真一个清晰和明了的定义是非常困难的。但一个通俗的系统仿真的基本含义是指:构建一个实际系统的模型,对它进行实验,以便理解和评价系统的各种运行策略。而这里的模型是一个广义的模型,包含数学模型、物理模型等。显然,根据模型的不同,有不同方式的仿真。系统可以分为连续时间系统和离散时间系统两大类,由于这两类系统的运动规律差异很大,描述其运动规律的模型也有很大的不同,因此,相应的仿真方法也不同,分别对应为连续时间系统仿真和离散时间系统仿真。

连续系统

连续时间系统仿真是指物理系统状态随时间连续变化的系统,一般可以用常微分方程或偏微分方程组描述。需要特别指出的是这类系统也包括用差分方程描述的离散时间系统。对于工科院校,因为主要研究的对象是工业自动化和工业过程控制,因此本教材主要介绍连续系统仿真。

离散事件系统

离散事件系统是指物理系统的状态在某些随机时间点上发生离散变化的系统。它与连续时间系统的主要区别在于:物理状态变化发生在随机时间点上,这种引起状态变化的行为称为“事件”,因而这类系统是由事件驱动的。离散时间系统的事件(状态)往往发生在随机时间点上,并且事件(状态)是时间的离散变量。系统的动态特性无法使用微分方程这类数学方程来描述,而只能使用事件的活动图或流程图。因此对离散事件系统的仿真的主要目的是对系统事件的行为作统计特性分析,而不像连续系统仿真的目的是对物理系统的状态轨迹作出分析。

随着现代工业的发展,科学研究的深入与计算机软、硬件的发展,仿真技术已成为分析、综合各类系统,特别是大系统的一种有效研究方法和有力的研究工具。

系统与模型

系统就是一些具有特定功能的、相互间以一定规律联系着的物体所组成的一个总体。显然,系统是一个广泛的概念,毫无疑问它在现代科学研究和工程实践中扮演着重要的角色。不同领域的问题均可以用系统的框架来解决。但究竟一个系统是由什么构成的,这取决于观测者的观点。例如,这个系统可以是一个由一些电子部件组成的放大器;或者是一个可能包括该放大器在内的控制回路;或者是一个有许多这样回路的化学处理装置;或者是一些装置组成的一个工厂;或者是一些工厂的联合作业形成的系统,而世界经济就是这个系统的环境。

一个系统可能非常复杂,也可能很简单,因此很难给“系统”下一个确切的定义。因为这个定义不但能够足以概括系统的各种应用,而且又能够简明地把这个定义应用于实际。但无论什么系统一般均具有4个重要的性质,即整体性、相关性、有序性和动态性。

首先,必须明确系统的整体性。也就是说,它作为一个整体,各部分是不可分割的。就好像人体,它由头、身躯、四肢等多个部分组成,如果把这些部分拆开,就不能构成完整的人体。至于人们熟悉的自动控制系统,其基本组成部分(控制对象、测量元件、控制器等)同样缺一不可。整体性是系统的第一特性。

其次,要明确系统的相关性。相关性是指系统内部各部分之间相互以一定的规律联系着,它们之间的特定关系形成了具有特定性能的系统。有时系统各要素之间的关系并不是简单的线性关系,而呈现出复杂的非线性关系。也正是由于这种非线性,才构成了我们这个多彩的世界。对于复杂的非线性关系,必须研究其复杂性与整体性。再以人体为例,人的双眼视敏度是单眼视敏度的610倍。此外,双眼有立体感,而单眼却无此特点。这就是一种典型的非线性特征,因此相关性是系统的第二特性,也是如今系统研究的主要问题。

除整体性和相关性外,系统还具有有序性和动态性。比如,生命是一种高度有序的结构,它所具有的复杂功能组织,与现代化大工业生产的“装配线”非常相似,这是一种结构上的有序性,对任何系统都是适用的。又如图1.1.1所示,一个非平衡系统如果经过分支点AB到达C,那么对C态的解释就必须暗含着对A态和B态的了解。这就是系统的动态性。

建立系统概念的目的在于深入认识并掌握系统的运动规律。因此不仅要定性地了解系统,还要定量地分析、综合系统,以便能更准确地解决工程、自然界和现代社会中的种种复杂问题。定量地分析、综合系统最有效的方法是建立系统的模型,并使用高效的数值计算工具和算法对系统的模型进行解算。

采用模型法分析系统的第一步是建立系统的数学模型,所谓数学模型就是把关于系统的本质部分信息,抽象成有用的描述形式,因此抽象是数学建模的基础。数学在建模中扮演着十分重要的角色,马克思说过:“一种科学只有在成功地运用数学时,才算达到完善的地步。”例如集合的概念是建立在抽象的基础上的,共同的基础使集合论对于建模过程非常有用。这样,数学模型可以看成是由一个集合构造的。

数学模型的应用无论是在纯科学领域还是在实际工程领域中都有着广泛的应用,但通常认为一个数学模型有两个主要的用途:首先,数学模型可以帮助人们不断地加深对实际物理系统的认识,并且启发人们去进行可以获得满意结果的实验;其次,数学模型有助于提高人们对实际系统的决策和干预能力。

数学模型按建立方法的不同可分为机理模型,统计模型和混合模型。机理模型采用演绎方法,运用已知定律,用推理方法建立数学模型;统计模型采用归纳法,它根据大量实测或观察的数据,用统计的规律估计系统的模型;混合模型是理论上的逻辑推理和实验观测数据的统计分析相结合的模型。按所描述的系统运动特性和运用的数学工具特征,数学模型可分类为线性、非线性、时变、定常、连续、离散、集中参数、分布参数、确定、随机等系统模型。

杂志介绍

计算机仿真是用计算机科学和技术的成果建立被仿真的系统的模型,并在某些实验条件下对模型进行动态实验的一门综合性技术。它具有高效、安全、受环境条件的约束较少、可改变时间比例尺等优点,已成为分析、设计、运行、评价、培训系统(尤其是复杂系统)的重要工具。

仿真定义

仿真是对现实系统的某一层次抽象属性的模仿。人们利用这样的模型进行试验,从中得到所需的信息,然后帮助人们对现实世界的某一层次的问题做出决策。仿真是一个相对概念,任何逼真的仿真都只能是对真实系统某些属性的逼近。仿真是有层次的,既要针对所欲处理的客观系统的问题,又要针对提出处理者的需求层次,否则很难评价一个仿真系统的优劣。

仿真方法

传统的仿真方法是一个迭代过程,即针对实际系统某一层次的特性(过程),抽象出一个模型,然后假设态势(输入),进行试验,由试验者判读输出结果和验证模型,根据判断的情况来修改模型和有关的参数。如此迭代地进行,直到认为这个模型已满足试验者对客观系统的某一层次的仿真目的为止。

模型对系统某一层次特性的抽象描述包括:系统的组成;各组成部分之间的静态、动态、逻辑关系 ;在某些输入条件下系统的输出响应等。根据系统模型状态变量变化的特征 ,又可把系统模型分为:连续系统模型——状态变量是连续变化的 ;离散(事件)系统模型——状态变化在离散时间点(一般是不确定的)上发生变化;混合型——上述两种的混合。

计算机仿真技术和用于仿真的计算机(简称仿真机)都应充分反映上述的仿真的特点及满足仿真工作者的需求。

仿真机

用于仿真的计算机。20世纪50年代的仿真机大部分是以电子模拟计算机为主机实现的,在部分特殊应用领域内也有以液压机、气压机或阻抗网络作为主要模拟设备的。由于电子模拟计算机的精度较差等缺点,从70年代初开始 ,数字模拟混合仿真机得到发展。从70年代末起,以数字机为主机的各种各样专用和通用仿真机得到普及和推广。由于高性能工作站、巨型机、小巨机、软件技术和人工智能技术取得引人瞩目的进展,在80年代内人们对智能化的仿真机寄予希望,也在综合集成数字仿真和模拟仿真的优势的基础上 ,设计出在更高层次上的数字模拟混合仿真机,在一些特定的仿真领域内,这种智能仿真机和高层次的数字模拟仿真机都取得令人鼓舞的结果。

随计算机技术的飞速发展 ,在仿真机中也出现了一批很有特色的仿真工作站、小巨机式的仿真机、巨型机式的仿真机。80年代初推出的一些仿真机,SYSTEM10SYSTEM100就是这类仿真机的代表。

仿真系统

为了建立一个有效的仿真系统,一般都要经历建立模型、仿真实验、数据处理、分析验证等步骤。为了构成一个实用的较大规模的仿真系统,除仿真机外,还需配有控制和显示设备。

摘自百度百科:https://baike.baidu.com/item/计算机仿真/2056561

公司微信公众号